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SECTION 1
INTRODUCTION

This report describes the application of linear optimum recursive
filtering to upgrade system timing for a bit-synchronous time division
multiple access (TDMA) relay communications system. This system was
previously developed at The Ohio State University (0SU) ElectroScience
Laboratory [1-6] under contracts with the Rome Air Development Center
(RADC) of the United States Air Force. Greatly increased signaling
rates and improved tracking of highly maneuverable airborne terminals or
relays are thus achievable while retaining the advantages of efficiency,
flexibility, and anti-jam protection capabilities inherent in this system.

In Section II background information relative to the RADC/0SU TDMA
system is given, and in Section III a brief summary of the pertinent
results of basic Kalman filter theory [7,8] are presented as a preface
to the analyses of Sections IV and V.

In Section IV, a two-dimensional model for the clock loop timing
filter is first developed and transient and steady state solutions are
obtained following essentially the method employed by Friedland [9]. A
three-dimensional augmented model is then developed employing an
acceleration correlation coefficient similar to that used by Singer and
Behnke [10] for whitening the maneuver noise. Closed-form steady state,
as weTl as transient solutions, for this model are obtained. Transient
response is then studied utilizing computer iteration techniques, and
results of Monte Carlo simulation studies to check the validity of the
models and analytical results are presented. Finally, the problem of
up-1ink synchronization is studied using a method of open loop cor-
rections from the clock loop to the ranging loop to augment the closed loop
transmit timing corrections. Expressions for the clock loop and ranging
loop timing errors are derived and closed-form steady-state solutions
for the transmit timing error variances for a system containing a maneuver-
ing relay and for a system containing maneuvering terminals are obtained
and evaluated.

Section V presents a more complete "second generation" analysis of
up-link timing utilizing a modified open loop feedback scheme to achieve
somewhat lower error variance under receiver noise limited (as opposed to
maneuver limited) conditions. This analysis also features retention of
additional cross correlation terms, neglected in the previous analysis,
which should lead to more accurate analvtical results at a cost of increased
complexity of the resulting expressions and a corresponding increase in
computational effort required to obtain numerical data.

Applications of these results to systerm desian are considered in
Section VI. The form of the steady state solutions of Sections IV and
V, although mathematically concise, are not particularly amenable to
direct application in system design; hence alternative forms are




developed and a.series of system design curves giving system parameters
as a function of known, or specified, signal and vehicle maneuverability

‘statistics and required timing accuracy are presented. Comparisons

between the approximate solutions for up-link timing of Section IV and
the more exact solutions of Section V are also given,

In Section VII, typical examples of computer simulation results are
given showing system transient response and steady state performance
for different signal and noise parameters, and a comparison of steady
state error variance with analytical results is given. Conclusions
and recommendations are summarized in Section VIII.




SECTION I1I
BACKGROUND

Techniques for implementing time division multiple access (TDMA)
satellite communications systems, particularly those containing a
large number of small non-stationary terminals, e.g., aircraft, have
previously been developed and successfully demonstrated, both theoreti-
cally and experimentally, using prototype modems and a satellite
simulator with adaptive spatial processor developed and constructed at
this laboratory [1-6].

The signaling format for this system is shown in Figure 1 [5].
The time continuum is divided into non-overlapping intervals or slots,
each of which is (normally) allocated for the relaying of signal from
no more than one terminal at a time. The slots are defined with respect
to the time base of the network clock signal (NCS) present on the
satellite down-1link once each subframe. At each user terminal the
time-base of a locally-generated signal (clock) is aligned with the
time base of the received NCS to establish a local receive clock. In
turn, a transmit clock is timed so that pulses transmitted by the terminal
occupy assigned time slots on arriving at the satellite. Proper trans-
mit clock timing is obtained, during the link-range slots, by estimating

the error in arrival time of pulses transmitted by the terminal as they {
are received on the down-link relative to the local receive clock.
The principal features of this system are: i

(1) Only one signal is incident on the satellite at a time so
that small terminals do not have to compete for down-1ink power
with much larger ground based terminals which may also be using
the system.

(2) A flexible demand assignment signaling format permits
efficient use of channel capacity for a large number of both small
and large terminals at various data rates compatible with their
needs and capabilities.

(3) Differential detection is used (with 2¢ or 4¢ DPSK
modulation) to minimize signal coherence requirements so that an
adaptive spatial processor (adaptive array antenna) can be ef-
fectively used at the satellite for up-link protection from
interference and jamming.

(4) Bit synchronous timing of both up-1ink and down-1link
signals relative to a system clock at the satellite, and the use
of differential detection, essentially eliminate the need for
preambles and guard space between data bursts thus permitting ef-
ficient signal switching and adaptive array operation for small as
well as large data bursts.
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A moderate amount of spectrum spreading, via a suitable PN code,
is used as a basis for identification of desired signals for spatial
processing and also provides additional processing gain for inter-
ference reduction.

To obtain reliable operation the timing of all received signals
relative to the receive clock must be accurately maintained at each
terminal, Practical timing error limits are about 5 percent of the
spectrum spreading code chip width to avoid a significant increase in
error rate [1]. In the present system this requires accurate control
of the transmit timing as well as the receive clock timing relative to
the system clock at the satellite and is accomplished by means of two
sampled data delay lock loops at each terminal. The first loop phase
locks the local receive clock to timing pulses received on the down-1ink
from the satellite once each subframe. These timing pulses may either
originate at the satellite - which is especially advantageous when an
adaptive array is employed at the satellite, or may be relayed by the
satellite from a designated network control terminal. With the
receive clock timing thus established the terminal is able to receive
all properly-timed transmitted signals relayed by the satellite. The
second loop then adjusts the terminal transmit clock so that a ranging
pulse transmitted by the terminal once each frame is received on the
down-11ink properly synchronized with the receive clock timing previously
established. These delay lock loops operate linearly provided that the
timing error does not exceed t1/2 chip. Separate coarse ranging (search)
circuits (not considered in this report) are used for initial acquisition,
or after loss of lock, to bring the error within this operating range.

The prototype system, designed to demonstrate concepts and
feasibility and to obtain experimental data compatible with the small
terminal concept, employed a relatively low code chip rate of 175.2 Kbps
for the Tower rate format, and 1.4016 Mbps for the higher rate format.
The required timing accuracy for this system, for both transmit and
receive clock timing, was readily achieved using simple averaging
filters (no memory) in the delay lock loops. As the data rate and/or
the terminal maneuverability is increased, however, absolute timing accuracy
must also increase in order to retain the same relative accuracy and
corresponding error rate. The techniques developed in this report shauld
provide timing accuracy sufficient for similar systems operating at 40
Mbit/s, or greater, with highly maneuverable terminals or relays having
accelerations on the order of 5 g.

The method of improving timing accuracy developed in this report
employs an optimum linear recursive (Kalman) filter in the terminal
receive clock loop to derive an optimum estimate of the system timing,
T, (time delay proportional to satellite range) from the noise-corrupted
clock pulses received from the satellite by the maneuvering terminal.
Optimum estimates of delay rate 1 (velocity) and T (acceleration) are




also derived by this filter and are fed as open loop corrections to
the transmit timing loop in a manner similar to that used, for T only,
in the original system [1]. Thus the prediction capability of the
clock loop filter is utilized in the ranging (transmit timing) loop as
well. (Unfortunately, timing errors due to clock oscillator drift are
essentially doubled when the open loop correction scheme is used.)

Note that to prevent instabilitv, the rate at which new range
estimates can be derived by the closed loop ranging loop is limited
by the round trip path delay between the terminal and the relay
(approximately 0.25 sec. for a synchronous satellite relay), while no
such restriction applies to the system clock pulse rate and terminal
clock loop. Hence for a satellite communications system these open loop
corrections can be made at a much higher rate (several times per
subframe) than can the closed loop range estimates derived by the ranging
Toop (once per frame).

In effect then, the clock loop provides the tracking capability
for transmit timing as well as receive timing, except for a constant
range offset. Only this constant offset, plus corrections for in-
accuracies in the open loop inputs and for oscillator drift needs to
be determined by the ranging loop, and this can be done effectively at
a slower rate with a less sophisticated circuit. For this reason, in
the present analysis, the original averaging filter is retained in
the ranging loop. However, some improvement in transmit timing accuracy
should be achievable by applying an optimum filter in this loop also to
obtain a better estimate of the offset and drift parameters and this may
be the subject of future studies.
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SECTION III
THE BASIC OPTIMUM LINEAR RECURSIVE (KALMAN)FILTER

The basic theory of the discrete optimum linear recursive filter,
often called the Kalman filter, is well known and adequately documented
elsewhere (see, for example, Sage and Melsa [7] and Nahi [8]) and
will not be repeated here. However, some pertinent results and im-
plications of the basic analysis which are applicable to the model
development and subsequent analytical solutions of Sections IV and V
are summarized here for convenience.

R R Y N Y R T TR T T

A convenient form of the basic Kalman filter for application to
the present problem is given in Figure 2. The purpose of this filter

MEASUREMENT INNOVATION KALMAN

GAIN 5 FILTERED
X + 4 Kod n ESTIMATE
: n n Kp | n°n + 3
£ +
4
| HZ, UNIT
: DELAY
1 PREDICTED MEASUREMENT
2
H |[=— P |
PREDICTED Znoy
ESTIMATE

Fiyure 2. Basic Kalman filter.

is to derive an optimum filtered estimate Z, of the system state vector
Z, following arrival of each noise-corrupted measured data point X,.

As shown in Figure 2, this %s accomp11shed by summing twc components:
(1) the predicted estimate Z,, and (2) the innovation , multiplied by
the Kalman gain vector K.

The predicted estimate Yn, which provides the memory of "learned"
component_of each new estimate, is derived from the previous filtered
estimate Z,_.1 via the transition matrix ®. Thus the predicted estimate
is up-dateg and recycled with the receipt of every data point so that,
at any given time, this estimate contains information, with optimum
weighting, on all previous data points collected up to that time.




The innovation &£, contains the new information supplied by the
current measured data point and is obtained by subtracting, from this
measured data, the predicted measurement which is the best estimate
of what the measurement should have been, based on all previous data
collected to date. _The predicted measurement is obtained from the
predicted estimate %n via the H-matrix which allows for the fact that
the measurement variables X _ may differ from the system state variables
Z,. The innovation therefore contains only the random part (white noise)
of the measured data and consists of (for the present example) the
random component of the effects of terminal maneuvers and the measure-
ment noise.

The Kalman gain vector provides the optimum weighting between the
innovation and the predicted estimate and normally varies (decreases)
with each subsequent data point after initial turn-on or acquisition
until steady state is reached asymptotically, at which time the
adaptive Kalman filter is equivalent to the steady state Wiener filter.
The Kalman gain vector is computed for each specific model (see Section
IV), and its value, for each iteration n, depends upon the prior
statistics assumed; i.e., the measurement noise and terminal maneuver
noise statistics which must be supplied externally. Note that the gain in
no way depends upon the measured data (a common misconception per-
petrated by the often used term - adaptive filter) and hence can be
pre-computed and stored if desired, rather than being computed iteratively
concurrent with the measurements. However, if, in addition to the basic
Kalman filter, a means is provided for measuring and upgrading the
prior statistics as a function of time, these may be used in the
iterative gain calculations to provide true adaptability.

The error variances, i.e., the variance of the difference between
the actual value of each state variable and its estimated value, are
also normally calculated (since these are used in calculating the gains)
and provide a measure of filter performance. These calculated variances,
however, 1ike the gain calculations, are accurate and optimum only to
the extent that the actual measurement noise and terminal maneuver
statistics agree with the prior statistics assumed for the calculation
and, of course, to the degree that the model accurately describes the
actual physical process. Hence computer simulation or actual measure-
ments are highly desirable in addition to the filter analysis to validate
the results obtained.

As is evident from Figure 2, increasing the Kalman gain vector
increases the relative input from the current measurement and hence
increases the capability of the filter to track a maneuvering terminal.
It also increases the contribution from measurement noise, however,
and so it is not surprising that the optimum gain setting is found to
depend upon the ratio 04/0gs Where og and og are the standard deviations
of the maneuver "noise" ané measurement noise, respectively. Increasing
this ratio increases the optimum gain setting, and conversely. In
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particular, if we let the maneuver statistics (o,) approach zero (i.e.,
stationary terminals and relay) then the gain vector asymptotically
approaches zero with increasing time (since the state vector becomes
completely predictable, and hence the gain can be reduced to zero

to reduce the input noise), and the filter becomes decoupled from the
measurement. This situation must obviously be avoided since, if this
happens, even the smallest error in the modeling and/or measurement
process will lead to very large errors in the predictions even though
the predicted error variance will approach zero along with the gain, a
condition known as divergence. This problem is easily avoided by
assuming a sufficiently large value of o in the modelling process.
Then if the actual maneuver statistics fall below this value the
filter performance, although not truly optimum, will generally be
adequate, and divergence will not occur.

The principal equations associated with the basic Kalman filter of
Figure 2 are summarized below for convenience.

n

L= Zn + K, (filtered estimate) (1)

’\‘ < - .

2. 28 L 5 (predicted estimate) (2)
’\J . .

2, = Xn = B2 (innovation) (3)

where Zn is the system state vector modeled recursively as

and the measurement is given by

X, =HZ +E. (5)

In the above equations, WM, and gn are white maneuver noise and
measurement noise, respectively. The state vector Z,, state transition
matrix ¢, and the matrices H and I' are model dependent and are developed
for two specific models in the following section, where expressions for
the Kalman gain vector K, and the associated error covariance matrices
are also derived.

-
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SECTION IV
MODELING OF A KALMAN FILTER IN TDMA TIMING SYSTEMS

A. Introduction

The terminal receive clock timing system of the TDMA modems
developed at The Ohio State University ElectroScience Laboratory
employs a sampled data delay lock loop (SDDLL) as shown in Figure 3a
[1]. When in lock, the sampled error voltage versus timing error
characteristic (Eg vs €) is linear for |e| < 4/2 where A is the chip
length of the PN code. This sets an upper limit on the timing error
for linear operation of the SDDLL at half the chip length. The discrete
loop filter in the SDDLL is a simple averaging filter in which N=4
samples are currently averaged to obtain an output error voltage sample
Es which then is used.to adjust the clock rate to reduce the error. A
simplified model of the SDDLL including the averaging filter is given
in Figure 3b.

Values of the chip length 4 and the timing correction period T¢
(4/subframe rate) for the current system in which 4 pulses are averaged
are 5.7 us and 107 ms, respectively, for the lower rate format; and
0.71 usec and 13.3 ms, respectively, for the higher rate format giving
a ratio Tg/a = 1.9 « 104 for both data formats. If we allow a timing
error of .05a for acceptable performance (to avoid a significant increase
in error rate) then a range rate up to 2.6 usec/sec (%1800 mi/hr relative
terminal velocity-assuming na oscillator drift or noise contributions)
could be accommodated. In the ranging (transmit timing) loop, however,
where the minimum correction time is limited by the round trip path delay,
the correction time used is Tp = frame rate = 0.427 sec. yielding, for
the same error criteria as above, a maximum range rate of 0.67 usec/sec
(450 mi/hr) for the lower rate format and 0.084 usec/sec (56 mi/hr.)
for the higher rate format. Thus the need for open loop corrections
to the ranging loop from the receive clock loop (currently provided by the
cross strap - see Section II) is clearly indicated when maneuvering
terminals and high code chip rates are involved.

We now desire to increase the code chip rate to approximately
40 Mbps, or greater, from the current values of 175 Kbps and 1.4 Mbps
for the lower and higher rate formats, respectively, and to allow for
tracking of rapidly maneuvering terminals. For a relative timing error
of 0.054 an absolute timing accuracy on the order of 1 nsec will now
be required.

In the absence of measurement noise, the required tracking accuracy
could be achieved simply by scaling the sampling interval by the same
ratio as the chip length, i.e., retaining the same TDMA format as
before, as measured in chips, since the relative timing error due to

10




MIXER
SANOPASS ENVELOPE
" FILTER DETECTOR
INPUT F
e IMAGE (1) €
2205 meaccr OurreRence SN <\ upenf—>
1, FILTER R L
MIXER T DISCRET
BANDPASS ENVELOPE € ISCRETE
L fiLren OETECTOR . gl
0°- i180° R 7 .
PHASE § otLar 3 4
MODULATOR
) S, 4 £,
LOCAL CLOCK SIGNAL
0° - 180° LOCAL CODE '
PHASE QDELAV TIiMING o2
7 CORRECTION
MOOULATOR 1 CIRCUIT
4 L NN u““
2 Lo L[] .L[J InpuT
™)
rerm Lot 4 X
OSCILLATOR N - STAGE FEEDBACK SWIFT REGISTER
CODE GENERATOR
PEEOBACK LOGIC NOT SHOWN
(a) BLOCK DIAGRAM
Z(” N-1| DELAY ELEMENTS
r A- N\
T
~Tn S
~TeS -T¢S Ane D —(t)
.0 heires e 1 — ] O o
NT¢ S

Figure 3.

(b) MATHEMATICAL MODEL

8l

The sampled data delay-lock loop (SDDLL).
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vehicle maneuvers depends on the ratio Tf/4, The relative error due to
measurement noise, however, is _(for E/Ny » 10, N, = constant) approxi-
mately proportional to (1/E)1/2 (see Equation (48) of Reference 1),

where E is the timing pulse energy and Ny is the measurement noise
density; and E can be held censtant, with decreased 4, only by increasing
the received power Py and/or increasing the number of chips M per

timing pulse (i.e., using a less efficient TOMA format). Thus the need :
for a more efficient timing system for higher data rate TDMA systems }
of this type is evident. As mentioned earlier in Section II this is |
accomplished by incorporating an optimum linear (Kalman) filter into

the receive clock timing loop and using the prediction and tracking

capabilities of this filter also, by open loop coupling, in the

ranging (transmit timing) loop. Appropriate models for this filter

will now be derived.

B. Discrete Kalman Filter for Clock Loop Timing

A two-dimensional model of the Kalman filter applicable to the
clock loop timing SDDLL is developed in this section.

Let T be the delay of the timing signal (proportional to the range
between the terminal and the satellite), T be the delay rate and T
the rate of change of the delay rate, and let the observation interval
be T¢. The observation is corrupted by a Gaussian white noise ¢, i.e.,

X(n) = T(n) + &(n) (6)

where n represents the nth sample, and the expected values of the measure-
ment noise are given by

E[z(n)] =0 (7)
E[sz(n)] = wi = const. (8)
E[z(n)&(k)] = 0 (n#k) . (9)

The relative motion between the terminal and the satellite can be ap-
proximately described by

T(n+1)
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T(n+1)

= T(n) + T(n) T, (an
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If ?(n) can be modeled by white noise, then

E[T(n)] =0 (12)
E[fz(n)] = oi = const. (13)
ELT()T(K)] = 0 (n#k) . (14)

Writing (10), (11) and (6) in matrix form, we have

Z(n+1) = ¢ Z(n) + I'T(n) (15)
where
T(n)
Z(n) = [ J (16)
T(n)
{i ij
® = (]7)
0 1
2
Y /2
T (18)
and
X(n) = H Z(n) + £(n) (19)
where
H=[10]. (20)

For the specific applicatjon..of the Kalman filter in the SDDLL, it
is more convenient to write T, T, T, og and o4 in units of the chip
length 4.  The observation interval T¢, which is controlled by the
local clock, is not constant because of the non-zero delay rate T.
However, as shown below, the observation interval T¢ in (10) and (11)
can be replaced by its constant nominal value with neqligible error.
Assume that the code frequency of the timing signal is 40 Miz. Then
the chip length 4 is equal to 25 nsec. Also assume that T = 3 usec/sec =
120 4/sec (about three times the speed of sound) and the nominal ob-
servation interval = .01 sec. The change in the observation interval from

13
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one observation to the next is only 30 nsec. If this change in the
observation interval is included in (10) and (11), it will only con-
tribute ¥ x 30 nsec = 3.6 x 107Y 4, which is negligible. Therefore, the
observation interval T¢ will be considered constant.

Following standard procedures for the Kalman filter (see Chapter
III1) we obtain the optimum estimate of Z(n),

Z(n) = Z(n) + K(n) [X(n) - H 2(n)] (21)
with
2(n) = ¢ 2(n-1) (22)
where
3 T(n)
i(n) = {— ! (23)

L_T(n)

is the optimum estimate of Z(n) after the measurement X(n) is processed
(i.e., the filtered estimate), and

: (n)
1(n) = [:? ";J (28)
1 T(n)

is the optimum estimate of Z(n) before the measurement X(n) is processed
(the predicted estimate). The gain matrix K(n) is given by

K(n) = P(n) HILH F(n) HT + R]™! (25)
where

R = OE (26)
and

Bn) = €[ - 2(n))(X(n) - 2(n))T] (27)

is the covariance matrix of estimation error prior to processing X(n).
The covariance matrix P(n) is computed recursively using the variance
equation

T

B(n+1) = oP(n)e' +rQr’ (28)

14




[1-K(n) H] P(n) (29)

©

—
>

-~
n

EL(Z(n) - Z(n))(Z(n) - 2(n))T] (30)

©
—
= |
~—
#

is the covariance matrix of estimation error after processing X(n),

=g (31)

is the variance of the random acceleration, and superscript T indicates
the transpose of the matrix. Using the matrix inversion lemma [7], we
obtain from (29),

T, -1

P-](n) = B'](n) + H'R™ H. (32)

Multiplying (32) by P(n){ Jb(n), we obtain

¥n) =p(n) + P(HTR™Y H B(n). (33)

By comparing the above equation with (29), we have

1

K(n) = P(n) H' R™ (34)

The initial estimation of Z (after two data points have been received)
is given by

g X(2)
2(2) = (35)
%; (x(2)-X(1))
where the values of X{1) and X(2) are obtained implicitly (outside the

SUDLL) from the 1st and 2nd range delay measurements, respectively. Then
the initial value of the covariance matrix of estimation error is

2 2
%

p(2) = (36)

2 LB et
R Tt Y
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The transient behavior is best studied using numerical methods
and will be given in section D. The steady-state behavior is given in
the following.

In the steady state, (28) and (29), using (25) reduce to

B=¢|BQT+FQFT (37)
and

A n, n, r . n

P="pP-pu [HPH+R]" 1 P 3 (38)

Combining (37) and (38),

o= (ForgrTy(e™1)T = P-puT[HPHT+R] T HP. (39)
Let
P, P
n
Pk (40)
Fa  Pq
then
N T ) Q1 2w g
HPH +R=[1 0] +eo. =P +0 (41)
5 5 ik
P, Lo

' n

B

BHTLHBHT+RIHP - — Eﬂ
2

P, to 0 P.+0 TR
g 3 . 2 3 1 P]P2 P2
(42)
and
A e
P,o P,o
P-PHTIHBH 4RI = Ly | 18 2
P40 2 o S N
1*% Bzog PiPy-P+Pyot | . (43)
We also have
16
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. 1 -Tf
07! = (44)
0 1
1272 TH/4
1] 2
My = Pzt2 1.]o, =0
fi i a 3 2
L T2/2 (45)
——a og Ti . oi T?
3 oy eV B
poror' =
02 T3
N a f 2 -2
B s (46)
and
B 02 T4 02 T—ﬂ
PR T e T ppr +2f
1 T 1.7 a2t 3 4 2R3t 2
o~ (P-rQr')(¢”")" 7 2 3
a
Ny A n 2 .2
Lpz'P3Tf o~ 5% '
(47)
On equating both sides of (39),
2 2.4, _ 2 2
Bl 2P T 4P Te0 Te/d = Blo E/(P]+<:E) (48)
% N BB
By-ByTero T2 = Bl (P +%) (49)
and
v 8wty N S 2
Py - 0g T¢ = P3-Fy/ (Fy o)) ey
The algebraic manipulations for determining P], BZ and 33 are as
follows:
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Define

3
= 4
e
£
32
B:
<
ogca f
and
4o
r o= ——52
o T
af
Then from (50):
A=8% o1,
(48) x 1 + (49) fo-
o2 v
(2 &
4 4 _ A B 4
A‘F*“;Z‘W*WK'F
From (55):

galk [§2+4(1+A)/r%]
T 2+A :

Substituting (56) into (54),

rn%-8r2a34(16-72r2) A2+ (32-128r2 A+ (16-64r2)
or
2,2 2.2
[r®A®-4(1+2r)A-4(1+2r) J[r°A°-4(1-2r)A-4(1-2r) ]
Therefore

18
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(57)

(58)

(59)




or
+ VT2r (T2r £ 1)2
2 .

L

A = (60)

The positive sign options must be chosen sinc A i_Oagnd, the second solu-
tion (60) must be discarded because it makes 1P3 - 5 < 0. Therefore:

_ /T%2r (VT¥ar + 1)2
2

A (61)
P
Finally we obtain
A%
L AR (A s 1)2 i
02 r2
(2
& _ (%2 +1)2 (63)
2r
cgoan
(A7)
g Gy
77 =7 (W12r + 1) (64)
Salf
where
4o
r=—= - (65)
o} T2
af

The ratio r is a dimensionless parameter which could be regarded as a
form of noise to signal ratio.

From (38)
: ) R e g i
= _—-2. = 66
1+ﬁ /o =
&
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O T T
D = P]P3-—P2 (67)
Therefore
P\ A (T - 1)
02 r2 et
3
P (/Te2r - 1)°
- Ll (69)
L er
E)3 ] e
-2—7-7(1*'2\”-]) . (70)
o T
af
Then from (34)
K P. /o
i 1
= = p HTR! (71}
’ 2 2

Therefore the steady state gain factors are given by

/T+2r (V127 - 1)2

K. = (72)

T r2
and

_ 2(/T¥2r - 1)2
Ke = : (73)
T T r2’
f

Graphs of P Ts P /0 and Ke T as functions of r are shown in Figure 4.

It is seen lhgt the norma11zed 1m1ng error variance just after processing
a data point P]/c is always less than 1, while the n%rma11zed timing
error variance Juét prior to processing a data point ]/o can be Targer
or smaller than 1. The cross over point occurs at r & 16 Therefore if
the observation interval is chosen to be




100

10

R0 0 11 A 0 o 1 B 1 L 1Lt

0.l 1.0 10 100
r

Figure 4, Steady-state gains and error variances versus r
for the two-dimensional Kalman filter.
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T

T < Ava e (74)

f

then the timing error can be kept below the inherent measurement error
at all times.

A simplified version of the SDDLL including a discrete Kalman filter
is shown in Figure 5. Referring to Figures 3 and 5, kj is the pro-

-TpS |- + ka2 | Te
o _kT/k,kz——/}’ : D -2
t i’/kz +
T
)
1’ T¢/N
Figure 5. Model of the SDDLL with a discrete Kalman filter.
portionality constant of the sampled error voltage versus timing error
when |e| < 472, i.e.,
ES = ke . (75)

The time delay e'TDs accounts for the finite response time of the band-
pass filter in the SDDLL. The integrator ky/S is the digital voltage
controlled clock. The sampler T¢/N is provided because time corrections
can only be made discretely. The value of N should be large enough

that timing error due to the range rate will be a small fraction of

the chip length and the clock will remain Tlocked.

The samplers labeled T¢ in Figure 5 close momentarily once per sample
period at times t = nT¢+Tp where nT¢ indicates the arrival times of the
samples T, while the sampler labeled T¢/N closes N times per sample
period (evenly spaced) with the initiaf closure occurring at t = nT¢ + Tp
+ Tg/2n.

The filter output, Tc in Figure 5, provides an optimum timing
estimate (within limits established by the discrete corrections
$f/N) at all times, This estimate varies from the predicted estimate
n (with variance Bn - the worst case) just prior to processing the
nth data point to the filtered estimate Tp (with variance P, - the
best case? just after the nth data point has been processed.
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If the bandwidth of the band-pass filter is optimum [1], i.e.,

B = 1.37/Ma (76)

IFopt

where Ma is the length of the PN code, then
1/2

%g_1]1.215 | . 1.476
A ? E7N6 (E/No)z
where

2 for square-law detection
C = (78)
1 for linear detection

E = PrMA = input pulse energy (joules)
P. = input power (watts)
and
No = one-sided input noise power spectral density (watts per Hertz).

To obtain the standard deviation of the maneuver noise oy, we
assume that the probability density of T is as shown in Figure 6 [10].

L Es

ve

> T

Figure 6. Probability density of T.

The quantity A7 in this figure might be considered as the maximum
"path delay acceleration" given by

23




A = Asc (sec/secz) (79)

where

>
u

terminal acceleration (m/secz) relative to the satellite, and
velocity of light (m/sec).

(¢}
]

Therefore, since the mean value E(T) is zero by symmetry, the variance
is given by

w} o

(1+4p -P ) (sec"z) (80)

ot = g(T?) - J 2 p(T) df =

where p(T) is the probability density function of Figure 6. fhe value of
oa thus obtained is taken to be a known constant in the modeling of the
Kalman filter.

If o, or oq vary widely with time in a given application, separate
measurements (or estimates) of og/o4 could be made periodically and used
in place of the calculated constants to obtain improved filter performance.

C. Augmented Discrete Kalman Filter

In the previous section the maneuver noise T is considered to
be white. However, in a TDMA modem a typical sampling period T¢
is only about ,01 sec which is much shorter than the time required
for executing a manuever, hence the maneuver at one sampling
period will be correlated with the maneuver at the previous and at the
next sampling period. In fact it can be correlated with maneuvers
separated by many sampling periods. If such is the case, the simple
discrete Kalman filter discussed in the previous section may not yield
satisfactory performance. An augmented Kalman filter is therefore
needed.

First, Equations (12)-(14) must be modified. A satisfactory cor-
relation function in the sense of providing realistic approximations
to the statistics of the maneuvers as well as yielding mathematically
tractable solutions is [10]

E[F(n) F(k)] = o MKl (81)

where o% is obtained as before (Figure 6 and Equation (36)) and the
corre]a%ion coefficient p is modeled by

24




B

0 S e (82)

The quantity A is essentially the inverse of the average manuever duration.
With the correlation defined as above, the dynamics of the terminal are
then described by

T(n+1) = T(n) + T(n) T, + 3 T(n) T4 (83)
t(n+1) = T(n) + T(n) T, (84)
T(n+1) = o T(n) + u(n) (85)
where u(n) is a white noise of zero-mean and variance Ug(]—pz). In
matrix notation, (83)-(85) becomes
Z(n+1) = ¢Z(n) + Tu(n) (86)
where
[ T(n)
Z(n) = | T(n) (87)
T(n)
s 2
1 T, T2
¢ = 0 | Tf (88)
0 0 0
and
0
r=10 (89)
LJ
The measurement is given by
X(n) = H Z(n) + &(n) (90)
with
H=1[100] (91)

and the statistics of &£(n) as given previously in Equations (7)-(9).
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Mathematical development of the augmented Kalman filter follows
essentially the same path as in the previous section, with a few
changes in the matrix contents (see Equations (28) through (36)),

e
Q-= “a(] 0”)

(92)
X(2)
2(2) = | + (x(2)-x(1)) (93)
f
0
and
2 7 —
Ge; \’JE/Tf 0
2 2 2
Vi po_ T
srnt o) 2 Ta 't 2.2 5 'f
p(2) = o{/Tf 5 23€/Tf > (94)
2
L 2
SHEES 2 Oa
Again, the steady-state behavior is discussed first. In the
steady state, let
P L el
P] P2 P4
v v v
P - S , (95)
v v v
LI
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Then from (39), we obtain

where

and

>
n

-
u
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(97)

(98)

(99)

(100)

(101)

(102)

(103)

(104)

(105)

(106)

(107)

(108)




Manipulations for solving this system of equations are as follows:

(99) - %—x (98):

D= 2 g%/ (1+h-p)

SN

Substituting (109) into (101):

40284

P (1+A=p )2 (14A) (1-p2)

F = =

Substituting (110) into (98):

B2 2028%

1
E = & -
2" T ™ Z(Fonmo ) 2(198) (1-02)

Substituting (109), (110) and (111) into (100):

2
2 208 _
8 E* r(1+A-p%(T-p)] b -

or
20B o |]+p s

(96) + g-x (97) + Ly x (98):
r

4

A-=B=(A+ g
¥

1g- 5:_2 82)/(1+A)

or

B =F (/T £ 1)°

28

(109)

(110)

(11)

(112)

(113)

(114)

(115)




Now let
- =1\ 2
A= (x¥1)°-1 (116)
and
_ 1+p,1/2
r= ro(TTF) 5 {(117)

Then substituting (115), (116) and (117) into (113) gives

r "
x4+2(1-o)(;1- l—-)x3+(1-o) “}-o)t §:]x2- 2(1-p)(3-p) 4+ 2(0=p)" _ 0.
r r r r
P 0 0 P
(118)
It can be shown (since A = 31/02 must be real and non-negative) that the
lower sign options of Equation 5118) must be used, and in addition that
this equation yields only one positive real root, which is the correct
root.

The 4th order equation (118) may be solved by the standard (closed
form) method as given in many mathematical handbooks [11-12] or by computer
iteration techniques. Both methods have been used to generate results
presented in this report. (The iteration techniques are easier to
program while the closed form solutions are more efficient.)

If ro(l-p)2>>1, then an approximate solution for x is

2
xy L+ @204 g - 31 } = )2(5—)3/2{5 % 4212, by )(Z_g.
e o

o o ng 2(1-p p g 16(1-0)2 "
(119)
From (34) and (38) we obtain the steady-state gain matrix,

"t Py/og
= ) = p 2

K = KT P2/o6 (120)
g o 2

Ks P,/o

where




7 2 B‘/Gi
KT= P]/0€=—'——,\T'——2- (121)
1+ P1/o
g
B fo.o T
g3 o g g el 2 Eaf
) PZ/OE e Al R (122)
f ]+P1/°E
B /o0 o
G G MR e
Ki = Pglog = 2 o (123)
rT. 1+P, /o
£ e
Then we obtain from Equations (96) to (123)
Y%
S
A= (x+1)°-1 = — (124)
(o}
g
P
o R
B =5 (Y1+A-1)€ = S (125)
&Ea 't
v

2 P

2B 4
0 = T P9, (126)

R AR
=277 (127)

g

&

_4 8 .
KtTe =¥ 198 (5o
w2 _4% D
e = v 1™ (129)

Graphs of Bl/oi, ﬁ]/og = KT’ K?Tf, and KfTi as functions of A

for different values of o (obtained from the exact solution, Equation
(118)) are shown in Figures 7 through 10. Note that for o0=0 the augmented
Kalman filter reduces to the two-dimensional filter analyzed earlier, and
the corresponding curves are in agreement with those given previously in
Figure 4.
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A model of the resulting augmented Kalman filter incorporated
into the receive clock sampled data delay Tock loop is given in
Figure 11. Sampling switch timing for this model and comments con-

= +
ke 0 /1; Ky /K kg ~Z
' - *
T/ k2
+ | Tt
+ 2 T[/N
Q
K/ kko ~Te /K,

Figure 11. Model of the SDDLL with an augmented Kalman filter.

cerning the time delay and the output T. are the same as that previously
given for the two-dimensional model of Figure 5.

D. Transient Response of the Discrete Kalman Filter

The settling time is an important factor to consider when choosing
a suitable filter for implementation in the SDDLL. A Kalman filter,
though optimum in a sense, requires more computer storage and computer
time than, for example, the (steady state) Wiener filter. If the settling
time is sufficiently short, a corresponding Wiener filter can be used in
place of the more sophisticated Kalman filter. In this section, the
transient responses of the discrete Kalman filters discussed in previous
sections will be studied and curves of the transient response and
approximate expressions for the settling time will be obtained.

The transient response of the simple discrete Kalman filter is
studied first. Combining Equations (28) and (29),

R

o [B(n+1)-rqrT 30717 = Bn) - P)HTIHR(n)HT+R]™TH B(n). (130)




Equating corresponding elements on both sides of (130), we obtain

B (n+1) -232(n+1)Tf+ﬁ3(n+1)T§-o§T§/4 - B](n)oi/(ﬁl(n)+c§) (131)

By(n41) - Byln+1)T, + 0§T$/2 5 Bz(n)og/(s](n)+sz) (132)

Bylnel) - 0212 = Bo(n) - Bo(n)/ (B (m)+e?) (133)

where 31, 32, 63 are the elements of p as defined previously in Equation
(40). In the steady state, Equations (131)-(133) reduce to Equations
(48)-(50). The above difference equations are nonlinear and can not be
solved analytically, hence numerical methods must be employed. To start
the iterations, we obtain the initial value of P(n) from (28) and (36)

2, 2.4 3 2, 2-4
5(c5+02T¢/10) T;»(og+oan/4)—T
B(3) = ; (134)
3 2, 2.4 2 2 rn2-0
T (040 Tf/4) > (o, +50 Tf/8)
£ £ a Tf g a

It is convenient to define the following variables:

r=4o€/oaTi (135)
A(n) =B, (n) /o (136)
B(n)=Fy(n)/o 0, T, (137)
C(n)=B,(n) /272, (138)

Then (131) through (134) become

A(n+1) = g-B(n+]) = l-g-C(nH) + A+R)n + ﬂ? (139)
r r
B(n+1) = 3 Clnel) + pprd - & (140)




2
3 B™(n)
C(n+1) = C(n) - qpthy + 1 (141)
and
F— 8 2 3 4
56 + o r(] + —-)c o T
3;7 £ 7 r2 gaf
P(3) = -
3 4 e2 10 P
T "(‘ i r_2>°g°an B" (] K ;‘2’) %ale (142)
e )

The filtered covariance elements are related to A(n), B(n) and C(n)
by

P(n)/o% = A(n)/(14A(n)) (143)
Pp(n)/5,0,T¢ = B(n)/(1+A(n)) (144)
P3(n)/a2T2 = C(n) - B2(n)/(1+A(n)) (145)

and the gain factors are

KT(n) = P](n)/o6 (146)
Kt(n) = %-rf- s 52(n)/o£oan, (147)

Graphs of 3](n)/c§, KT(n) and Ki(n)Tf for different values of r are

given by the p=0 curves in Figures 12, 13 and 14. From these figures,
we obtain a fairly good approximation for the settling time,

V2

s %25 r T (148)

f.
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For example, using a typical value of T¢ X .01 sec

.08 sec , r=10
AT .8 sec , r=103 ) (149)
8 sec , r=10°

From the definition of r (Equation (135)), Equation (148) indicates
that the settling time depends only on the ratio o /0, irrespective of
the sampling period Tf., However, we have neg]ecteé correlation in the
maneuver noise when deriving (148). As the sampling period becomes shorter,
the effect of correlation in the maneuver noise can not be overlooked. lle
expect that the settling time will also depend on the sampling period
when correlation is included.

Now consider the transient response of the augmented discrete
Kalman filter. Following the same reasoning as above, we obtain the
recursive covariance equations as follows:

A(n+1) = S (ne1) - ‘:‘} C(n+1) - 2 D(n+1) + lr% E(n+1) - %z F(n+1)

L 5:.2 (150)
B(n+1) = & c(n+1) + D(n+1) - 2 E(n+1) + £ F(ne1)

+ % + 2 (151)
C(n+1) = 2E(n+1)-F(n+1)+C(n) - Bi;(\”r)] 5 (152)
o(n+1) = & g(ne1) - Zp(ner) + 800D 2 (153)
E(n+1) = F(n+1) + oE(n) - 2B(LION) (154)
F(n+1) = o%F(n) - %@ (155)




e i S R S T

where v, A(n), B(n) and C(n) are defined as before and

D(n) = Fy(n)/eo o, (156)
E(n) = 35(n)/oo§Tf (157)
F(n) = (Bg(n)-0l) /%% . (158)

In the steady state (150)-(155) reduce to (96)-(101). The initial co-
variance matrix is obtained from (94) and (28)

— —
8(1+p)\ 2 3 4(1+p) 2(1+p)
5 6 + —E'YT)OE IY6~+——;—2——G£Oan —-—‘F""pdgca

B(3) = | 2 414 B2 10 + 8 22( L% 2
P(3) 4r<+ . anTf g " 6+-———-;2—-— oan 1+§ppcan

:“_LFB’)""&% (1 3 ) ooyTe ’ o
(159)
The filtered covariance matrix elements are then given by

Py (n)/os = An)/(1+A(n)) (160)
Po(n)/ogo,Te = B(n)/(1+A(n)) (161)

P ( 22 = 2
3(n)/o5TE = C(n)-B%(n)/(1+A(n)) (162)
Pg(n)/po o, = D(n)/(1+A(n)) (163)
Py (n)/posT = E(n) = B(n)D(n)/(1+A(n)) (164)
Pg(n)/o%s2 = F(n) = DZ(n)/(1+A(n)) + 170 (165)
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and the gain factors are

]
|
L
|
|
}
|

Kp(n) = 6](n)/3§ (166)

K (n) = F%;’ ﬁz(n)/gggan (167)

K (n) = iﬁz &4(n)/pﬁéaa . (168)
rTf

Graphs of B](n)/og, KT(”)’ Kf(n)Tf and Kf(n)Ti for different values

of r and o are shown in Figures 12 through 15. From these fiqures we
obtain an approximation for the settling time

1/4
s v 252 (F2) T

- % 2.5 r;/ZT 5 2 (T )ot, (169)

£ f?

The condition r]/2(1-0)>1 is essentially the same one under which (119)
is obtained. For fixed r, the settling time decreases as p increases
until the condition r]/z(l-o)»] is no longer satisfied. Then the
settling time increases as p increases further. The dependence of 4t on
the sampling period is implicitly contained in ¢ (0=1-2T¢). For r<109,
0<.999 and T¢=.01 sec, the settling time falls approximately in the range
of one-tenth to ten seconds.

E. Monte Carlo Simulation

i Performance of the discrete Kalman filter described in the previous
i sections car be investigated using a Monte Carlo simulation method. In
this method, the receiver noise and the maneuver noise are generated by a
computer using arithmetical random number formulas. The results of

| several simulation studies are summarized here.

In the first case, the simulation method was used to obtain a
comparison between the performances of the discrete Kalman filter and
its corresponding Wiener filter. Correct statistics of the receiver
noise and the maneuver noise were assumed. Values of o, o5 and o, were
chosen as
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p =0, .5, .9, .99, .999 (170)

g, ™ .SA/secz, ]SA/sec2 (77}
and

O = AL 1AL (172)

For a code chip rate of 40 Mbit/s, & = 25 nsec. Then o, = 154/sec’

represents an acceleration of 11g which is probably the highest for
aircraft. For o, equal to 15A/sec2, the sampling period T¢ should not
be greater than .02 sec. in order to keep the transient timing error
below 0.54 and thus avoid loss of lock. In this simulation study Tf
was chosen to be .01 sec.

In the steady state, the standard deviation of the one-step-

prediction timing error P was found to agree in general to within 10%
of the analytical results Af Section C, except for oz = .54/sec¥,

o, = .14, in which case the simulation results were 30% Tower than the
analytical results.

The settling time of the discrete Kalman filter agrees with
Equation (169). For the corresponding Wiener filter, the settling time
is about.twice as long. For oy =.1a the timing error of the VWiener
filter in the transient state can become greater than .54 which could
unlock the local clock of the SDDLL. This is also true for the Kalman
filter if o, > .24, It appears that a better initial estimate than that
given by Equations (93) and (94) is needed.if og,> .24. The crucial
points are the initial estimates of T(n) and of T(n). Error in the
initial estimate of T(n) is rather unimportant because of the short
sampling period.

In the second simulation study, the performance of the simple
discrete Kalman filter was compared to that of the augmented Kalman
filter of the previous study. If a simple discrete Kalman filter is
implemented irrespective of the correlation coefficient, the per-
formance will not be optimum. The higher the value of ¢, the poorer
the performance will be.

Assuming correct values of o, and o, in implementing the simple
Kalman filter, the performance was degraded by 3% for o = .5, 40% for
p = .9 and 60% for o = .99. However, the analysis of previous sections
indicates that the maneuver noise standard deviation oz should be re-
placed by o, (140)/(1-0)]1/2 if a simple discrete Kalman filter is to be
implemented for p#0 (i.e., this is equivalent to replacing the parameter
r by r, - see Equations (102) and (117).  Improvements in performance
can then be obtained. This was verified in the simulation study except
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for the case p = .99, o4 = 158/sec?, og = .014, For other parametric
values the degradation in the performance was only 1% for o = .5, 10%

for p = .9 and 30% for p = .99. Thus it appears that with p less than

.99 and with proper substitution of the maneuver noise variance, the
simple discrete Kalman filter can be implemented to save computation

time and storage cost while still providing satisfactory performance.

For o Squa] to .99 and higher, the augmented discrete Kalman filter should
be used.

One potential major disadvantage of implementing the discrete Kalman
filter is that it may require accurate estimation of the value
r = dog/oaTé. Therefore in the third simulation study the effect of the
accuracy of r on the performance of the discrete Kalman filter was
studied. First, for p = .99 and .999, it was found that the performance
of the augmented filter is degraded by only 10% if the estimation of r
is off by a factor of 2, and by 80% if the estimation of r is off by a
factor of 5. Testing values of o5 and o, are the same as in the first
two studies. The small percentage of degradation can be attributed to
the small slopes of the curves shown in Figure 7. The same study was then
repeated for p = 0, .5 and .9 using the simple discrete Kalman filter with
proper substitution of the manuever noise. Results were essentially the
same as for the augmented filter with only a slight increase in the
percentage degradation of performance.

The tracking capability of the discrete Kalman filter (worst case)
was then considered. The terminal was initially stationary and the
discrete Kalman filter with assumed values of p, o, and o¢ was in the
steady state. Then an instantaneous velocity was suddenly imparted to the
terminal as when a frequency offset occurs, Typical response of the
discrete Kalman filter is shown in Figure 16. Following an initial
over-shoot the filter settles down quickly. It was found that the
maximum instantaneous velocity which can be imparted to the terminal
without risk of unlocking the local clock of the SDDLL is approximately
given by

£ -1/2
ATmax X1.80r A/Tf . (173)

Results of additional simulation studies of the discrete Kalman
filter, including transient response, noise performance for stationary
terminals, and comparisons of analytical values of error variance with
simulation results are given in Section VII.

F.  Up-Link Synchronization

Closed-loop synchronization of the TDMA system is achieved by
adjusting the timing of up-link transmissions to maintain a prescribed
timing relationship between the received down 1ink signals and a
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The synchronization of the single one way link

network clock signal.
illustrated in Figure 17 [1] will be considered in this section.
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Figure 17.

As previously stated, the terminals need not be ground-based.

moving terminals can be included. Following [1], it will be assumed
that a portion of the time allocated to each terminal is devoted

exclusively to transmission of a pulsed envelope ranging signal from

Strict preservation of

which timing error information is extracted.
the TDMA concept requires that the network clock signal also have a

pulsed envelope waveform.
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The TDMA synchronizing receiver employs two sampled-data delay-
lock Toops (SDDLL's) to maintain proper signal timing. In one SDDLL,
the time base of a locally generated clock signal is aligned with the
time base of the received network-clock signal. This SDDLL with a
discrete Kalman filter has been analyzed in previous sections. The
second SDDLL estimates the timing error of the received ranging signal
relative to the locked local clock and appropriately corrects the
timing of the up-link transmissions, The performance of the second
SDDLL will be discussed in this section. Both the network clock and
ranging signal waveforms are bi-phase modulated by suitable PN codes.
An abbreviated block diagram of the synchronizing receiver is shown in
Figure 18 [1]. (Identical codes for the clock and ranging loops are
assumed here for simplicity, although different codes are actually used
for signal identification.) Note that the averaging loop filter in the
clock loop of the original TDMA modem has been replaced by a discrete
Kalman filter. However, as stated previously in Section II, within the
spectral range of the timing signal and the dynamic range of the terminal
motion, the discrete Kalman filter in the clock loop can provide the
tracking function for both loops. Therefore, in the ranging loop the
simple averaging loop filter will be retained.

Closed-loop timing corrections in the ranging loop must be separated
by an interval larger than the propagation delay of the ranging signal
(about 250 msec when a synchronous satellite relay is used) in order to
maintain ranging loop stability. However, if fast moving terminals and
a high code chip rate are employed, timing error in the ranging loop
accumtdlated in such a time interval can be larger than 4/2 if only
closed-loop corrections are made. Therefore, estimates of the down-link
delay rate and acceleration derived in the clock Toop are employed as
open-loop corrections in the ranging loop. The modified two-loop TDMA
synchronizer used previously [1], with certain changes as shown in
Figure 19, will serve this purpose. In this figure, 4Tcf and AT.¢ are
the sampling period offsets (errors) in the clock loop and the ranging
loop, respectively (i.e., ATc pf = Tc pf-Tr where T. n¢ are the nominal
subframe lengths and T¢ is the actua? subframe length at the satellite).
The formula for determining the quantity Ay will be given later. Details
of the clock loop Kalman filter were given previously in Figure 11.

Relationships between the sampling instants of the samplers are
shown in Figure 20, where T3 is the PN code period. It will be assumed
that the Ny ranging signal pulses are sampled every Tf seconds where
T¢ = KT3. Neglecting circuit delays, the sampling instants (A) represent
the times when system clock samples are received and corrections in local
clock timing are made as a result of measured timing errors. At times
(B) additional corrections are made, as predicted by the Kalman filter,
to compensate for the effects of terminal or satellite maneuvers
(velocity and acceleration). Times (C) indicate when ranging pulses are
received on the down-link. Note that the Ny ranging pulses of each burst
are spaced by the subframe time, Tf, as are the system clock pulses but
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Figure 19.
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are offset from these by an amount n, Ty (when properly timed) so that
interference between system clock and ranging signals does not occur.
Note also that to prevent instability in the ranging loop, Tf and I,
(the number of subframes per frame) are chosen so that the separation
between the first ranging pulse of each burst and the last pulse of the
previous burst exceeds the maximum round-trip propagation delay, tpax.
Sampling instants (D) represent the times when the Ny ranging pulses of
each burst have been averaged and corrections in transmit timing to
compensate for measured timing errors are made. Additional (open-1loop)
corrections to transmit timing are also made at times (A) and (B)

above (see Figure 19).

We now proceed to analyze the responses of the modified synchronizer
as follows. Within a sampling interval T¢, the network clock can be
described by

- S 2
T (nT+8) = To(an) + To(an)é $ To(an)G i 05§5If.

o (0T (174)

In the steady-state, the discrete Kalman filter can track non-random
delay accurately. Therefore, in the steady-state
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ELT (nT+6)] = ELT (nT)] + [T (nT,) 06 + ET (nT()16%/2. (175)

where E[ ] indicates the expected value. However, this equation is
true only when the corrections from samplers (B) of Figure 19 can be
made continuously. To account for the discrete nature of these
corrections, (175) is modified:

17 i
f : f
E[Tc(an+m ﬁ; +6)] = E[To(an)] + E[To(an)] m NZ
s 2 Ti Ach
+ E[TO(an)]m s (176)
2N f
c
where
¥ T, T

- 2NE—< 6 < ?NE ,0<ms<N and 0<m ﬂ; tosT. (177)

Thus the expected value of the clock-loop timing error is

T T T

e g (nTetm Nf +8) = E[T_(nT +n Nf +6) - T_(nTom Nf +6)]
sT P T
= E[To(an)] - —Tii + E[To(an)] (%-+m Né) 6 .

(178)

The subscript s denotes the expected value. From the previous sections
we obtain the variance of the clock-loop timing error,

.
2 o5 = XN 2 e SR & & _ f
cec(an+5) = p] + 2p25 + p35 + P45 + Psa + Pso /4, § =m HZ
(179)
and
6% (nT 4T ,-0)=F (180)
€c £°F 1
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where the ﬁi's and Bi's are elements of the covariance matrices P
and P, respectively, as defined in (95). The variance af (an+6) is
a monotonically increasing function of §. ¢

Next, consider the ranging-loop response. We shall first derive
some additional formulas related to the steady-state Kalman filter

which are essential to the calculation of the ranging-loop timing
error. From (86),

2 L ik
Z(n+2) = ¢ Z(n) + [ @ ~° Tu(n+k-1) (181)
k=1
where i Z_T
1 Tf Tf/2
¢ = |0 1 Tf
0 0 o
S _— (182)
and
o 2 e 9% N 2 ol
e & T¢ 2 2
B LR o For i (2e=2k+1)| N Te >{22(1-0)=(140) (1-p7)/(1-0)"]
k=1
L % b )
e=[0 1 Te 1o0 =0 1 Te(1-07)/(1-p)
k=1
% L
0 O o U @ o
e 1 —
(183)
Thus
- o g v
T (n+e) = o T (n) + } o " u(n+k-1) (184)
B : k=1
: s 10" s o S
To(n+z) = To(n) + T = To(n) + kél _— u(n+k-1) (185)
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2
T P
To(n+k) = To(n).u,]'f 1'0(”) + ?_f_{zli}l:‘il)éu*'p)(]-pk)

. 2000 (01)-(140) (15 7K)
&

T,(n)

k=1

. u(n+k-{j}

Also from (19), (21), (22) and (86),

Ze(n+1) = Z(n+1)-2(n+1)=(I-KH)[¢Z€(n)+Fu(n)]-K£C(n+l)

and

(1—0)2

(186)

(187)

L
() = L1001 2 (m) + ] [(1-KH) e K[ (1-KH) Tu(n+k-1)-KE (n+k) ]
=1

Thus

P(2) = E[Z_(n+2)Z](n)] = [(I-KH)e

oe(2) = E[Z (m2)g ()] = -[(1-k) 61 *Ko}

a

1%

c

(for

5,(1) = ELZ (n+)u(n)] = [(1-KH)e 1" (1-KH) Tl (1-6%).

Note that °g(£) and oa(l) are vector quantities, i.e.,

°aT(R)
oa(ﬁ) = | o,4(%)

o,7(2)

and similarly, for og(l).
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Now refer to Figure 19. The ranging-loop clock at I,T +T¢4n,.T4
(i.e., the time at which a ranging pulse is received) is related to that
same clock at &T¢+n.T, (one frame earlier) by the expression

AT
: “rf
Tr(lrrf+an+ana) = Tr(sz+ana) + Tf IrTf
+ CT(1,1r+z) + CO(R,Ir+£) + CC (193)

where C., Cy and C_ are due to the propagation delay change, the open-
loop correction and the closed-loop correction, respectively.

Because of the propagation delay, any change in-satellite motion is
not known at the terminal until after the (one-way) propagation delay
has elapsed, while a change in terminal motion is known immediately.
Hence the effects of the propagation delay change C. differ depending
upon whether the satellite or the terminal is maneuvering. The case
of a stationary terminal and maneuvering satellite (worst case) will be
considered first. In this case C_ is given by

C (2.1 42) = 2[T (1 Tek2Ten ) = T (2Tp4n T.)]. (194)

Expressions for the open-loop and the closed-loop corrections involve
the propagation delay t and the ranging-loop sampling instant n.T,.
Let

5] 1
T - ana = NTTf -mo -8 (195)

i.e., the time period from transmission of the ranging pulse to the
nearest subframe boundary (and received system clock pulse) preceeding

reception of this pulse is expressed as an integer number (N.) of sub-
frames (T¢) minus an integer number (m.) of clock Toop correction inter-
vals (T¢/Ne) minus the remaining offset (8.),

where

F T Te
-m;<er<mc—,o_<_m_riNcand0imTN—‘ + 6 in. (]96)

______




Then

cf
Co(z,Ir+2 = - [T (1 T +2T -N T ) (RT -N Tf) = —T;- IrTf]

mTe
-1 (1, T 4T e-N Te) -1 (JLTf-NTTf)]< — AO)

I = mrTf mTTf
'[Tc“rTf‘“”f‘”T'f)‘Tc(”f'“TTf)](ZN *ho) W

c c
(197)
and
Ar Ng-1

Co w1y (TelMTetn Ta)-6 (N T To) T (T, To) {158}
if

r+_(Nr-1)Tf—IrTf <L Tf SETak (Nr-])Tf (199)
where

Ar = krler‘ (200)
n (198) it can be shown that

ATrf
T(nTetn T) = T (2Te#n T.) + 4 (n-2)Tg-C (n,2)-C (n,2).  (201)

Using (194) and (201), we obtain from (198)

N,-1 aT
& - r
Cc = AplTo(RTetn T, )-T (2Te4n, To)1 - Ar("[" » iz)Tf "T"'

+
=2 >

e W G

Il ©~173

N -1
L {ro(“fmrTa)'ZTo(”Tf+"rTa)+Tc(an+ana)'Er("Tf+”rTa)+co(n ,E} .

(202)
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Using (194) and (202) in (193)
To(IrTf+£Tf+ana)-Tr(IrTf+2Tf+ana) = (AT (2T 0 T )

= T (8T etn T, ) T4, 4, (203)

where

Uy = To(ATetn T ) =T (I Te#2Tetn T, )-C (2,1 +2)

N -1 AT
r rf
e alE
A N -1

+

i} 3

To(nTedn T )T (&Tc4n T,)=C (n,4) (204)

-

n=0

and

N -1

I O~

A
W
Wy = L To(nTetn T )-T (nTetn T )+ £ (nTen T ). (205)

We shall assume that the clock loop is in the steady state. Then

making use of (178) and (184)-(186) we obtain the expected values of
(204) and (205),

I N.-1
Ly P A r 2 n
= E[T € g o -] al Y T REL
e Sl L L e
r n=0
N 2y
T N N N Tl
19)(=p ) e S o LTI B |
2(1-p i 2
f 2T¢
(mt AO) ( ) m'Y mT AO
| ] . ; -'-p .-'-( b )
5 N: T; Ne c —T%

(206)
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and

E[w2] - ArEcs("rTa) - Arecs(ETf+ana)‘ (207)

Equation (206) can be made independent of E[¥O(~N T¢)] if Ay is chosen
according to the expression "

2
i (140 ]-pNT) m, % {1s5] m. N NT ana
o -p e ol e W
c 2NC 2
nfTi T,
= (]-p) 2T2 = . (208)
T
f ]-(]-D)N—(-:—
For p ¥ 1, (208) reduces to
m nT
A, = (@T - ;fa) Beikir o (209)
c

Then from (203), (206), (207) and (208) we obtain

Ers(IrTf+£Tf+"rTa) = (]—Ar)srs(ETf+ana)
N -1 AT AT
x wll o , i cf rf
L E‘ Ar ( 2 jl( Te - T ) p A Arecs(ﬂfmrTa) (210)

nTe#n T.) = E[T (nTc4n T)-T (nTcen T )] (211)

where

Ers(
and

T # (Nr—l)Tf - IrTf < in ST (Nr-l)Tf | (212)

From (210), we obtain the solution for the mean ranging loop timing error
Ers(nIrTf”’TfmrTa) .
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ers(n!rTf+le+ana) e (QT +n T )( ) L=~ ) ]

Ir Nr-l ch AT
(’A’; g )( T i Teme g (4Ten, T,)

I

(213)
For the system to be stable,
: lim (1-A.)"=0. (214)
n—)@
Thus we must set
‘ 0 <A <2 (215)

In the steady-state, the mean ranging loop timing error is given by

I N -1 AT AT
_ ¥ r cf v
brs(nIrTfH“TfmrTa) o (Ar b= +%>(ij s Tf.> Tf+€cs(ZTf+ana)'

(216)

The relationships between ELTols E[Tc], and E[T,] for E[f0]=0, Ny=2, and
Nc=1 are shown in Figure 21. This figure will be examined in detail later
(1n Section VI-B) when applications to system design are considered,

To calculate the variance of the ranging-loop timing error, we assume
that all the random processes of (203) are zero-mean. This is permissible
since the control system is approximately linear in the sampled-data
sense over the range of operation for which the model is applicable.

Using (184)-(186), (208) and the following relations

Tc(an) To(an)

TnTg),  T(nTe) = T (nT)-T_(nTp) (217)

T.(nT) = T (nT,) - T_(nT,) (218)

we can rewrite (204) and (205) as
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Figure 21. The steady-state delay-function responses of the
modified synchronizer for the case Nr=2, NC=1.
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k=1 (1-0)2 -

I +2-k
A I +2-k /m ANmMmT
1-p L L 0 2 r T O\ T
e () e R ) e

2
: E(z-km-p)-mp)(1-o“"> Te
2 . ;

1-pl-k
“p

)

m A m A\m
i °> 30 . oz-k( Tt o) I
) e ar e )

:
u(-N_+k-1)
c

(219)

(cont. next page)
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—

2
£ n-k
T*“T-‘r(

m ANm T2
e " (g 12) T |t )
e f C

- [T (TN T)-T (nTe-N T.)]

m A
* - T 0
- [Te(le-NTTf)-TE(an-NTTf)] (Nz-+ T#)'Tf

- . m A \m
- [T (TN TO)-T (nT =N T0)] (ﬁ- + T‘l)-,i Te (219)

and

b

N -1 n2T2
u = ra
T(an)+Te(an)ana + Te(an) e Er(an+ana)

€

W, = &
< Nr n=2

Il O~

(220)

Due to the complexity of the expression, we shall consider two
cases only. For the first case let the clock loop and ranging loop
measurement noise variances be jdentical and assume no maneuver noise,
1480 ¢

6. =0 (221)

and periodically-stationary.
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In this case, all the random variables, u and TE, TE, T are zero.
Thus (203) reduces to 5

Er(IrTfHTfmrTa) To(IrTf+RTf+ana)'Tr(IrTf+£Tf+ana)

N -1

= (I-Ar)er(le+ana) + %E ngo gr("Tf+ana) (222)
and the variance of € is
2 2 A 2
cer(erf+le+ana) = osr(ETf+ana) = N;Ti:K;T 9, . (223)
For the second case we assume
me=m =0, R =W =0 bz 88, %= N =L ==k, (224)

Because the largest variance occurs at £=N_, this is the most
important case to investigate. In this case, because the value of p
is close to unity,

A XNT

0 ¥ N.Te (225)

and (203) reduces to
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[ +2+N 2
o rT T 2 Tf
er(IrTf+2Tf+ana) N-) (Ir+£+NT-k) > u(-NT+k-1)

=
1 e e
r L a2 o (1t kON TEJu (=N +k-1)

3 Te(IrTf+£Tf-NTTf)-Te(IrTf+2Tf_NTTf)NTTf

B4 Te(_NrTf)+Te(‘NTTf)NTTf+Te(0)+€r(ana)

T +2+4N 2
Fig e (I_+24l k)2 ¢ (-N_+k-1)
= - _._.u - -
k=IL+R/+] | o T 2 k3
Y
IF+2 NETE N% 2 Ti
= kél > u(-NT+k-1) + kél (NT-k) > u(-NT+k-1)

" Tl TeHTe-N Te)d (1T eon 7o) 0T,

; Ts(_NTTf) = Te(-NTTf)NTTf b Te(o) = Er("rTa)

(226)
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Then substituting & = NT into (226),

N
&
n Y 2
Er(IrTf+NrTf+"rTa) N - kél [(NT-k) u(Ir+k-1)+NTu(k-1)+k(2NT-k)

TZ
f
U(-NT"‘k-])] 7
i Te(IrTf) i TekIrTf)NrTf
+ TE(-NTTf) + Te(_NrTf)NTTf + TE(O) + Er‘(ana) (227)

and substituting N.=I,. into the right-hand side of (227) and taking the
expected value of eﬁ, we obtain

4
r 1
2 ~ 4,.4, 2 2y F pr By 2
ol (LT Ten T.) % kzl [(1,-K)+I+k" (21 -k)°] 7= (1-0)oy,
B s Bugde? 2
+ 3P +AP,I T 2P T + o)

Ir
t L u(k-1)L(1 k)T (1.T,)

2s 2
£ LEh LT I T0 TS (228)

or
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I 4
T
2 o © 4, .4, .2 2o Vg 3 9
O (I TN Tetn T.)% L (I k) "+T#K"(21 ~k) ] 7~(1-0%)a

k=1

+30, + 4P I T, + 25 I T

e 2
1 2 f f Er

I

¢ 2,
+ ) [(1=k) %, (I -k+1)Tet

. 2, 73
, (I-k+1)1 T7]
. k=1 ay % af rf

(229)

where use has been'made of (191) and (192). 1In applying Equation (191),
terms are neglected if & > I,.

Graphs of the ranging loop error variance, Equation (229) are shown
in Figures 22 and 23. If the propagation delay is assumed to be .25 sec.
then Figure 22 applies for T¢ = .01 sec. and Figure 23 for Te = 001 sec.

From the two cases considered, we can obtain an approximation

2 : AT 2 .
for Oer(IrTf+N1Tf+"rTa) when M Ty replacing a with ogr/Nr in
Equation (229).

For the case of a maneuvering terminal and stationary satellite,
derivation of the ranging loop timing error follows essentially the same |
procedure as described above with the following changes: The equation
for the effects of a propagation delay change Cos (Equation (194)) |
is replaced by

CT(z,Ir+2) = TO(IrTf+sz+ana) - To(sz+ana)

+ To(IrTf+£Tf+ana-r) - To(le+ana-r) (230)
and the gain factor Ay (Equation (209)) becomes

A =0 (231)

i.e., no open loop (predicted) velocity or acceleration corrections are
needed since any change in range for the case of the stationary
satellite is immediately evident at the terminal,
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Normalized ranging loop timing jitter vs.

Figure 22.
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In the steady-state, the expected ranging loop timing error e,¢ is ‘
still given by Equation (216). However, the equation for calculating
the variance of the ranging loop timing error becomes

gr(IrTf+sz+ana) = (1—Ar)er(le+ana)

mT
2 Tt
+ (]-AY‘) TE(R«Tf-NTTf)*FTe(le—NTTf) —N-c—

2

.. T 2
+ T (2Te-NTe) T Te
c

3

mT
' o i
iy Te(IrTf+sz-NTTf)+Te(IrTf+sz-NTTf) —NZ—

=
A N

.. 2
+ T (L TeHTe-N Te) Te

~n

Ne

A, NF'] ; mTe
+N—- éo TE:(an-NTTf)+Te(an_NTTf) _I‘T(_:—

-
>

m2

= T 2

+ Te(n-NT) —TZN Tf
¢

nT

‘ A N -1 oA
s = ra
TE(an)+Te(an)ana+Te(an) . i

+§.(nTe4n T) : (232)
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For the case

L= N, = Ir’ Ar = Nr =1, n.=m =0 (233)
the variance is
0% (LT 40T 40T ) 2 3B + o2 (234)
eErTE T e Rt Py Er

which corresponds to Equation (229) of the stationary terminal case.
Curves of P]/og VS, rp were given previously in Section C (see Figure 8).
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SECTION V
UP-LINK TIMING - EXTENDED AMNALYSIS

A. Introduction and General Analysis

This section presents a more comq]ete qnal{sis of up-link timing
error including development of a model applicable to both the stationary-
satellite moving-terminal case and the stationary-terminal moving-
satellite case. An optimum form of augmented open loop coupling from

the clock loop to the ranging loop is developed (needed only in the case
of the moving satellite) which differs from that utilized in Section

IV-F in that only an acceleration term %T ) is used rather than a com-
bination of acceleration and velocity ( 0?. This is possible since a
constant satellite velocity (zero-acceleration) produces a constant
offset in receive clock and up-link timing which is compensated for by
the coarse ranging system during initial Tock-up. Thus no tracking is
required to compensate for the presence of a velocity term and only the
acceleration term is needed. Elimination of the velocity term should
reduce the noise coupled from the clock loop to the ranging loop and
hence result in reduced error variance under noise-1imited operating
conditions. The analysis of this section also retains additional cross
correlation terms not included in the previous analysis and conse-
quently should produce more accurate results. Typical data and compari-
sons with data from the analysis of Section IV-F are given in Section VI.
Addittonal notation used in the subsequent analysis is:

R(t) ~ distance between the relay and a user terminal

D(t) ~ a delay function defined as D(t) = R(t)/c
where ¢ is the speed of light

dg(t) ~ down-link delay

d¢(t) ~ round-trip (total) delay =«

dy(t) ~ up-linz delay referenced to the receive time base:
d,(t) & dy(t) - dy(t)

tr (n)~ time of occurrence (receipt) of the n-th ranging pulse
in a burst of Nr successive ranging pulses

¥ ~ ranging loop processing delay

Dr
T ~ frame duration = NgT¢ where T¢ is the subframe duration, and

N = Ir ~ Number of subframes per frame.
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Also we have

e (t) 2 T (8)-T_(t) (235)

ep(t) 2 T (2)-T (1) (236)
and

Ere(t) 2 TE)T(D)=T (£)-e (£)-T (t)=e (t)=e_(t) . (237)

It is assumed that the clock frequencies in various parts of the system
are related by

| fr:fczfo=fa+Afo (238)
| and

fy "~ ranging loop code generator clocking frequency

fc v clock loop code generator clocking frequency

fa v assigned code generator clocking frequency

fg ~ effective code generator clocking frequency associated with
the network clock signal radiated by the satellite (relay)

A model of the two-loop terminal synchronization system with simple
cross strapping applicable to the stationary satellite case is given in
Figure 24 and an illustration of the delay function vs. time for a typical
terminal maneuver is given in Figure 25. From these figures we obtain

dy(t) = D(t) (240)

dy(t) = dy(t)+"d (£)"*D(t)+D(t-2D(t))+D (t-2D(t))[D(t)-D(t-20(t))]
(241)

To(t) = D(t) (242)
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Figure 24, Model of the TDMA synchronizer for the i

stationary satellite case.
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Figure 25. Delay functions for the stationary
satellite case.
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and
Tr‘(to”F)= Tr(to) ” To(to+TF) i To(to)
Afo
i To(to+TF'dt(to+TF)) 3 To(to-dt(to)) h) _?; B
Afo
- [Tc(to+TF“dt(to+TF)) - Tc(to-dt(to)) + -f: TF]
Ar NF
fE L Teltg(m) = Tt () - (e ()] (243)
where
to . [tcr ¥ st(tcr)] ¥ to * TF (244)
tep © rp(Nr) * T (245)
and
ét(t) = D(t) + D(t+2D(t)) + D(t+2D(t)) [D(t+2D(t))-D(t)]. (246)
It follows that
ep(EtTe) = = k8= ec(to+TF'dt(to+TF)) s Ec(to'dt(to))
By B
P T o L Dot ) - et () - g (e ()]
(247)
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Similarly, from Figures 26 and 27, for the stationary terminal case
there results

dy(t) = D(t-D(t)) + D(t-b(t)) [D(t)-D(t-D(t))], (248)
d (t) = 2d,(t), (249)
T (t) & D(t-d (t)), (250)
and
of
Tt #TE) = T (t)) + 2[D(t +#Tp-dy(t +Tp)) - D(t -d (¢ ))] - _ff Te
of
= [T (g +Tp-d (t #TE)) = T (t ~d (£ ) + =2 Tc]
_ a
A, N¥
'L [T (tp(n)) = T (t,(n)) - ¢ (¢, (n))]
(251)
where
to N [tcr+ 6t(tcr)] - to+TF (252)
r : trp(Nr) * Ty (253)
and
s,(8) = 200(+0(t)) + D(t+D(£))[D(t+D(t)) - D(£)]] . (254)
Since
T (t) & D(t-d(t)) (255)

it follows that
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Figure 26. Model of the TDMA synchronizer for
the stationary terminal case.
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To(t) - T (t-d. (t)) . (257)

Then by noting that

Aé(t) . Ao(t+6t(t)) (258)

Aé(t-dt(t))= b (t-d () + 6, (t-d,(t)) = a_(t) (259)

where the prime indicates an equivalent term shifted to the opposite end

of the delay blocks (dt(t) = dq(t) + dy(t)) the equivalent model of
Figure 28 is obtained.

The effect of the term 4,(t+84(t)) in the preceding model (Figure 28)
can be minimized via additional open loop corrections. Assume that such
corrections are made every T¢/Ny seconds and that ty represents a
correction instant. Ideally, the open-loop correction at t=t3+Tf/N3~ would
equal 0y (ta+te/N;”) where

Oa(ta+Tf/Na-) E Ao[(ta+Tf/Na_) ¥ st(ta+Tf/Na-)] i Ao[taﬂst(ta):I

v T
- To(ta+Tf/Na ) - st(ta+Tf/Na N;

—+

(260)

Since ?o is not known exactly, the added open loop corrections can, at
best, be estimates, 04, where

T
5.2.F va. s . (261)
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Figure 28. Equivalent model of the TDMA synchronizer
for the stationary terminal case.

The addition of this term via an augmented cross strap from the clock
Toop to the ranging loop is shown in the augmented model of Figure
29%

An equivalent model for the TDMA synchronizer with augmented cross
strap is given in Figure 30. Although appearing somewhat more complex
than that of Figure 29 in that there is a certain amount of redundancy
in the arrangement of signal inputs and function blocks, it is more
amenable to the analysis to follow and is applicable (by setting appropri-
ate terms to zero) to the stationary satellite case as well as to the
stationary terminal case. From Figure 30 we obtain
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Figure 29. Augmented cross strap model of the TDMA Synchronizer
for the stationary terminal case.
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e i o

Tr(to+TF) = Tr(to) + TO(t0+TF) R To(to)
Afo
+ Tt #Te=d (E+TE)) = T (t-d () - & I
Afo
- [T (e #Tp-d, (2 +T)) - T (e -d (t))) + == T¢]
a
A, N'E
+ oL [Tc(trp(")) - Tr(trp(n)) - trn(trp("))]
+Q(t +T.) - Q(ty) o

where

tcr * st(tcr) - TF ) to > tcr i Gt(tcr) (263)
Top = tlh) + Ty (264)
5,(t) 2 Z{)(tm(t)) + D(t+D(t)) [D(t+D(t)) - D(t)]} (265)
Te > dp + (N-T) T+ T (266)
Q(t) 2 T (t) - T (t-dy(t) - T,(t-d,(t)) (267)

and Ta(t) is defined in the equivalent model of the augmented cross
strap synchronizer, Figure 30. Similarly,
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Te(tp(n)) = T (t}T (t

eptM)) = To(t,)

Af

+ Tyt (n)-dy(t (n) - T (t -di(t)) - —fa"- [t,p(n)-t,]

af
- {Tc(t,.p(n)-dt(t,.p(nn)- Rt [trp<n>-t01}

+Q(t_ _(n)) - Q(t.). (268)

trp 0

Using this expression and the defining equations for e and ey, Equations
(235) and (236), it can be shown that

A r
Wf n§1 [Te(tp(n)) - T(t (0] = Ale (t))+e (t -d, (t )+t )]
Ar Ng
WL [ec(trp("))+€c(trp(")'dt(trp("))+Q(trp("))]
(N.-1) 20f
" A [(tO'trp(])) DT s o (269)

a

Incorporating this result in the expression for Tr(ty+TF), Equation (262),
and solving for er(t°+TF)'gives

en(to#Te) = (1-A)[e (£ )+e (t -d (t Ja(t )]

= et Tp-d (t +T0)) - Q(E +Tp)

+
=
I o~

[ (tp (m))te (8 (m)-dy (b (m)Qt, (n)+e, (8, (n))]

1 ¢crp e rn'rp

(Nr-l) 2Af0
+ Ar[(to-trp(l)) - — Tl + T (270)

a




l From this expression it is evident that

e (to¥2TE)=(1-A )le (t +Te)+e (b +Tp-d, (t +T))+0(t +Tp)]

- ec(t0+2TF-dt(to+2TF))-Q(to+2TF)

A e
+ Nf ngl[sc(trp(n)+TF)+ec(trp(n)+TF-dt(trp(n)+TF))
QU (n)+T)+t (8 (n)+TE)]
(Nr']) 20f
i Ar[(t0+TF-(trp(1)+TF)) ahw: TF]+TF 7 ; (271)

a

Substituting the expression for ep(ty+Tf), Equation (270), into Equation
(271) gives

e (£,#2T) = (1-A)%0e (t e (t -d (£ )+t )]

0
- ec(to+2TF-dt(t0+2TF)) - Q(to+2TF)

r

L Leg(tp)+(1-2)Ty)

te (b, (0)+(1-0)Ted (£, ()+(1-6)T))

+Q(trp(n)+(]'9")TF)+trn(trp(n)+(]-£)TF)]

(N-1) 26F 1 :
Lt (1) - —5— Tl 2 1 (14




Continuing in this manner it can be shown that

epltotmTe) = (1-A)"[e (t )+ (t -d,(t ))+q(t,)]

= ec(t0+mTF-dt(tO+mTF))-Q(to+mTF)

m-1 A
A
t R AR T

E Le (t, (n)+(m-1-2)Tp)
2=0 g

+ ec(trp(n)+m-1-R)TF-dt(trp(n)+(m-]-z)TF))

At () (m-1-0) T 4 (£ (0)+(n-1-2)T)]

rp

(Nr-]) 2Af0 m;] 2
Lt (e =Tl + T 2 ] (14!

(273)

Clearly, (1-Ar)m must diminish to zero as m is increased to a large value
if the transmit timing loop is to respond in an acceptable manner.
Consequently, a necessary conditio<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>